Source code for dagster.core.definitions.executor_definition

from enum import Enum as PyEnum
from functools import update_wrapper
from typing import Any, Dict, Optional

from dagster import check
from dagster.builtins import Int
from dagster.config import Field, Selector
from dagster.core.definitions.configurable import (
    ConfiguredDefinitionConfigSchema,
    NamedConfigurableDefinition,
)
from dagster.core.definitions.reconstructable import ReconstructablePipeline
from dagster.core.errors import DagsterUnmetExecutorRequirementsError
from dagster.core.execution.retries import RetryMode, get_retries_config

from .definition_config_schema import convert_user_facing_definition_config_schema


class ExecutorRequirement(PyEnum):
    """
    An ExecutorDefinition can include a list of requirements that the system uses to
    check whether the executor will be able to work for a particular job/pipeline execution.
    """

    # The passed in IPipeline must be reconstructable across process boundaries
    RECONSTRUCTABLE_PIPELINE = "RECONSTRUCTABLE_PIPELINE"  # This needs to still exist for folks who may have written their own executor
    RECONSTRUCTABLE_JOB = "RECONSTRUCTABLE_PIPELINE"

    # The DagsterInstance must be loadable in a different process
    NON_EPHEMERAL_INSTANCE = "NON_EPHEMERAL_INSTANCE"

    # Any solid outputs on the pipeline must be persisted
    PERSISTENT_OUTPUTS = "PERSISTENT_OUTPUTS"


def multiple_process_executor_requirements():
    return [
        ExecutorRequirement.RECONSTRUCTABLE_JOB,
        ExecutorRequirement.NON_EPHEMERAL_INSTANCE,
        ExecutorRequirement.PERSISTENT_OUTPUTS,
    ]


[docs]class ExecutorDefinition(NamedConfigurableDefinition): """ Args: name (str): The name of the executor. config_schema (Optional[ConfigSchema]): The schema for the config. Configuration data available in `init_context.executor_config`. If not set, Dagster will accept any config provided. requirements (Optional[List[ExecutorRequirement]]): Any requirements that must be met in order for the executor to be usable for a particular pipeline execution. executor_creation_fn(Optional[Callable]): Should accept an :py:class:`InitExecutorContext` and return an instance of :py:class:`Executor` required_resource_keys (Optional[Set[str]]): Keys for the resources required by the executor. """ def __init__( self, name, config_schema=None, requirements=None, executor_creation_fn=None, description=None, ): self._name = check.str_param(name, "name") if callable(requirements): self._requirements_fn = requirements else: requirements_lst = check.opt_list_param( requirements, "requirements", of_type=ExecutorRequirement ) self._requirements_fn = lambda _: requirements_lst self._config_schema = convert_user_facing_definition_config_schema(config_schema) self._executor_creation_fn = check.opt_callable_param( executor_creation_fn, "executor_creation_fn" ) self._description = check.opt_str_param(description, "description") @property def name(self): return self._name @property def description(self): return self._description @property def config_schema(self): return self._config_schema def get_requirements(self, executor_config: Dict[str, Any]): return self._requirements_fn(executor_config) @property def executor_creation_fn(self): return self._executor_creation_fn def copy_for_configured(self, name, description, config_schema, _): return ExecutorDefinition( name=name, config_schema=config_schema, executor_creation_fn=self.executor_creation_fn, description=description or self.description, requirements=self._requirements_fn, ) # Backcompat: Overrides configured method to provide name as a keyword argument. # If no name is provided, the name is pulled off of this ExecutorDefinition.
[docs] def configured( self, config_or_config_fn: Any, name: Optional[str] = None, config_schema: Optional[Dict[str, Any]] = None, description: Optional[str] = None, ): """ Wraps this object in an object of the same type that provides configuration to the inner object. Args: config_or_config_fn (Union[Any, Callable[[Any], Any]]): Either (1) Run configuration that fully satisfies this object's config schema or (2) A function that accepts run configuration and returns run configuration that fully satisfies this object's config schema. In the latter case, config_schema must be specified. When passing a function, it's easiest to use :py:func:`configured`. name (Optional[str]): Name of the new definition. If not provided, the emitted definition will inherit the name of the `ExecutorDefinition` upon which this function is called. config_schema (Optional[ConfigSchema]): If config_or_config_fn is a function, the config schema that its input must satisfy. If not set, Dagster will accept any config provided. description (Optional[str]): Description of the new definition. If not specified, inherits the description of the definition being configured. Returns (ConfigurableDefinition): A configured version of this object. """ name = check.opt_str_param(name, "name") new_config_schema = ConfiguredDefinitionConfigSchema( self, convert_user_facing_definition_config_schema(config_schema), config_or_config_fn ) return self.copy_for_configured( name or self.name, description, new_config_schema, config_or_config_fn )
[docs]def executor( name=None, config_schema=None, requirements=None, ): """Define an executor. The decorated function should accept an :py:class:`InitExecutorContext` and return an instance of :py:class:`Executor`. Args: name (Optional[str]): The name of the executor. config_schema (Optional[ConfigSchema]): The schema for the config. Configuration data available in `init_context.executor_config`. If not set, Dagster will accept any config provided for. requirements (Optional[List[ExecutorRequirement]]): Any requirements that must be met in order for the executor to be usable for a particular pipeline execution. """ if callable(name): check.invariant(config_schema is None) check.invariant(requirements is None) return _ExecutorDecoratorCallable()(name) return _ExecutorDecoratorCallable( name=name, config_schema=config_schema, requirements=requirements )
class _ExecutorDecoratorCallable: def __init__(self, name=None, config_schema=None, requirements=None): self.name = check.opt_str_param(name, "name") self.config_schema = config_schema # type check in definition self.requirements = requirements def __call__(self, fn): check.callable_param(fn, "fn") if not self.name: self.name = fn.__name__ executor_def = ExecutorDefinition( name=self.name, config_schema=self.config_schema, executor_creation_fn=fn, requirements=self.requirements, ) update_wrapper(executor_def, wrapped=fn) return executor_def def _core_in_process_executor_creation(config: Dict[str, Any]): from dagster.core.executor.in_process import InProcessExecutor return InProcessExecutor( # shouldn't need to .get() here - issue with defaults in config setup retries=RetryMode.from_config(config["retries"]), marker_to_close=config.get("marker_to_close"), ) IN_PROC_CONFIG = { "retries": get_retries_config(), "marker_to_close": Field(str, is_required=False), }
[docs]@executor( name="in_process", config_schema=IN_PROC_CONFIG, ) def in_process_executor(init_context): """The in-process executor executes all steps in a single process. For legacy pipelines, this will be the default executor. To select it explicitly, include the following top-level fragment in config: .. code-block:: yaml execution: in_process: Execution priority can be configured using the ``dagster/priority`` tag via solid/op metadata, where the higher the number the higher the priority. 0 is the default and both positive and negative numbers can be used. """ return _core_in_process_executor_creation(init_context.executor_config)
@executor(name="execute_in_process_executor") def execute_in_process_executor(_): """Executor used by execute_in_process. Use of this executor triggers special behavior in the config system that ignores all incoming executor config. This is because someone might set executor config on a job, and when we foist this executor onto the job for `execute_in_process`, that config becomes nonsensical. """ from dagster.core.executor.in_process import InProcessExecutor return InProcessExecutor( retries=RetryMode.ENABLED, marker_to_close=None, ) def _core_multiprocess_executor_creation(config: Dict[str, Any]): from dagster.core.executor.multiprocess import MultiprocessExecutor # unpack optional selector start_method = None start_cfg = {} start_selector = config.get("start_method") if start_selector: start_method, start_cfg = list(start_selector.items())[0] return MultiprocessExecutor( max_concurrent=config["max_concurrent"], retries=RetryMode.from_config(config["retries"]), start_method=start_method, explicit_forkserver_preload=start_cfg.get("preload_modules"), ) MULTI_PROC_CONFIG = { "max_concurrent": Field(Int, is_required=False, default_value=0), "start_method": Field( Selector( { "spawn": {}, "forkserver": { "preload_modules": Field( [str], is_required=False, description="Explicit modules to preload in the forkserver.", ), }, # fork currently unsupported due to threads usage } ), is_required=False, description=( "Select how subprocesses are created. Defaults to spawn.\n" "When forkserver is selected, set_forkserver_preload will be called with either:\n" "* the preload_modules list if provided by config\n" "* the module containing the Job if it was loaded from a module\n" "* dagster\n" "https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods" ), ), "retries": get_retries_config(), }
[docs]@executor( name="multiprocess", config_schema=MULTI_PROC_CONFIG, requirements=multiple_process_executor_requirements(), ) def multiprocess_executor(init_context): """The multiprocess executor executes each step in an individual process. Any job that does not specify custom executors will use the multiprocess_executor by default. For jobs or legacy pipelines, to configure the multiprocess executor, include a fragment such as the following in your config: .. code-block:: yaml execution: multiprocess: config: max_concurrent: 4 The ``max_concurrent`` arg is optional and tells the execution engine how many processes may run concurrently. By default, or if you set ``max_concurrent`` to be 0, this is the return value of :py:func:`python:multiprocessing.cpu_count`. Execution priority can be configured using the ``dagster/priority`` tag via solid/op metadata, where the higher the number the higher the priority. 0 is the default and both positive and negative numbers can be used. """ return _core_multiprocess_executor_creation(init_context.executor_config)
default_executors = [in_process_executor, multiprocess_executor] def check_cross_process_constraints(init_context): from dagster.core.executor.init import InitExecutorContext check.inst_param(init_context, "init_context", InitExecutorContext) requirements_lst = init_context.executor_def.get_requirements(init_context.executor_config) if ExecutorRequirement.RECONSTRUCTABLE_JOB in requirements_lst: _check_intra_process_pipeline(init_context.pipeline) if ExecutorRequirement.NON_EPHEMERAL_INSTANCE in requirements_lst: _check_non_ephemeral_instance(init_context.instance) def _check_intra_process_pipeline(pipeline): from dagster.core.definitions import JobDefinition if not isinstance(pipeline, ReconstructablePipeline): target = "job" if isinstance(pipeline.get_definition(), JobDefinition) else "pipeline" raise DagsterUnmetExecutorRequirementsError( 'You have attempted to use an executor that uses multiple processes with the {target} "{name}" ' "that is not reconstructable. {target_cap} must be loaded in a way that allows dagster to reconstruct " "them in a new process. This means: \n" " * using the file, module, or repository.yaml arguments of dagit/dagster-graphql/dagster\n" " * loading the {target} through the reconstructable() function\n".format( target=target, name=pipeline.get_definition().name, target_cap=target.capitalize() ) ) def _check_non_ephemeral_instance(instance): if instance.is_ephemeral: raise DagsterUnmetExecutorRequirementsError( "You have attempted to use an executor that uses multiple processes with an " "ephemeral DagsterInstance. A non-ephemeral instance is needed to coordinate " "execution between multiple processes. You can configure your default instance " "via $DAGSTER_HOME or ensure a valid one is passed when invoking the python APIs. " "You can learn more about setting up a persistent DagsterInstance from the " "DagsterInstance docs here: https://docs.dagster.io/deployment/dagster-instance#default-local-behavior" ) def _get_default_executor_requirements(executor_config): return multiple_process_executor_requirements() if "multiprocess" in executor_config else [] @executor( name="multi_or_in_process_executor", config_schema=Field( Selector( {"multiprocess": MULTI_PROC_CONFIG, "in_process": IN_PROC_CONFIG}, ), default_value={"multiprocess": {}}, ), requirements=_get_default_executor_requirements, ) def multi_or_in_process_executor(init_context): """The default executor for a job. This is the executor available by default on a :py:class:`JobDefinition` that does not provide custom executors. This executor has a multiprocessing-enabled mode, and a single-process mode. By default, multiprocessing mode is enabled. Switching between multiprocess mode and in-process mode can be achieved via config. .. code-block:: yaml execution: config: multiprocess: execution: config: in_process: When using the multiprocess mode, ``max_concurrent`` and ``retries`` can also be configured. multiprocess: config: max_concurrent: 4 retries: enabled: The ``max_concurrent`` arg is optional and tells the execution engine how many processes may run concurrently. By default, or if you set ``max_concurrent`` to be 0, this is the return value of :py:func:`python:multiprocessing.cpu_count`. When using the in_process mode, then only retries can be configured. Execution priority can be configured using the ``dagster/priority`` tag via solid metadata, where the higher the number the higher the priority. 0 is the default and both positive and negative numbers can be used. """ if "multiprocess" in init_context.executor_config: return _core_multiprocess_executor_creation(init_context.executor_config["multiprocess"]) else: return _core_in_process_executor_creation(init_context.executor_config["in_process"])